Financial Predictions Using Cost Sensitive Neural Networks for Multi-Class Learning
نویسندگان
چکیده
منابع مشابه
On Multi-Class Cost-Sensitive Learning
A popular approach to cost-sensitive learning is to rescale the classes according to their misclassification costs. Although this approach is effective in dealing with binary-class problems, recent studies show that it is often not so helpful when being applied to multiclass problems directly. This paper analyzes that why the traditional rescaling approach is often helpless on multi-class probl...
متن کاملCost-Sensitive Learning with Neural Networks
In the usual setting of Machine Learning, classifiers are typically evaluated by estimating their error rate (or equivalently, the classification accuracy) on the test data. However, this makes sense only if all errors have equal (uniform) costs. When the costs of errors differ between each other, the classifiers should be evaluated by comparing the total costs of the errors. Classifiers are ty...
متن کاملFinancial predictions based on bootstrap-neural networks
In this paper neural netw orks are applied to nancial data in order to predict the daily price of the nancial index LIFFE. Our atten tion is focused on the choice of the exogeneous variables and on the training of the netw ork itself. The rst problem is solved by using the pre-whitening method that provides information on which variables are the most relevan t for our prediction. The latter pro...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Multi-task Neural Networks for QSAR Predictions
Although artificial neural networks have occasionally been used for Quantitative Structure-Activity/Property Relationship (QSAR/QSPR)studies in the past, the literature has of late been dominated by other machine learning techniques such as random forests. However, a variety of new neural net techniques along with successful applications in other domains have renewed interest in network approac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advanced Engineering Forum
سال: 2016
ISSN: 2234-991X
DOI: 10.4028/www.scientific.net/aef.16.104